Tracking of Convex Objects

B. Parvin and S. Viswanathan

U. Dahmen

Information and Computing Sciences Division National Center for Electron Microscopy

Lawrence Berkeley Lational Laboratory
Berkeley, CA 94720
parvin@george.lbl.gov

ABSTRACT

In this paper, we present a technique for grouping line
segments sinto convex sets, where the line segments are
obtained by linking edges obtained from the Canny edge
detector. The novelty of the approach is twofold: first we
define an efficient approach for testing the global convexity
criterion, and second, we develop an optimal search based
on dynamic programming or grouping the line segments
into convex sets. Furthermore, we use the convexity results
as the initial conditions for a deformable contour for object
tracking. We show results on real images, and present a
specific domain where this type of grouping can be directly
applied.

1 Introduction

We are interested in detection and tracking of precipi-
tates observed during in-situ electron microscopy exper-
iments. In these experiments, the mechanical properties
of a precipitate —some kind of alloy— have to be quantified
as the temperature cycles between heating and cooling val-
ues. These precipitates generally consist of convex objects,
and due to the noise, shading, and internal sub-structures,
some form of grouping would be necessary for their local-
ization.

Perceptual grouping has been an active area of research
in the computer vision community [2, 10, 6, 3, 5, 14],
and some researchers view it as an integral part of any
high level reasoning or object recognition tasks. A typical
application for grouping is object detection. In general,
object detection by any local process is ambiguous. The
ambiguities emanate from noise and changes in contrast—
introduced by the low-light-level imaging— and the lack of
global feedback inherent in the local pixel processing. In
addition, most techniques in low level processing assume
certain model for the underlying local pixel distribution;
it is only an approximation and does not hold at all times.

This paper deals with a particular type of grouping that
involves searching for convex objects [7, 8]. In this context,
it is believed that convexity is a significant perceptual cue
since it remains invariant under perspective transforma-
tion. Furthermore, a number of object recognition sys-
tems have relied on finding convex groups that correspond
to sub-parts [3]. However, we suggest that grouping based
on convexity is only one step of the computational pro-
cess in mid-level vision, and additional constraints, in the
form of high level filters for such attributes as symmetry,
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contrast, and color, are important aspects of any interpre-
tation system. Our system extract edges with the Canny
edge detector [4], constructs line segments using iterative
line fitting to linked edges, and groups line segments into
convex sets. The main novelty of our system is twofold.
First, we define a new notion of global convexity that is
simple to compute, and second, we define a search strat-
egy that is globally optimum and is based on dynamic pro-
gramming. In general, global optimality has the advantage
of better noise immunity than local search techniques.

In the next section, we briefly review the past work,
and then outline the details of our technique. Finally, we
present the results of the grouping process, address its lim-
itations, and point out to additional constraints that are
needed for a specific domain.

2 Past work

The first work on grouping of isolated line segments into
a convex set is due to Huttenlocher and Wayner [7]. The
main novelty of their system is in the scale space invariant
representation, based on constrained triangulation, of the
local neighborhood function. The technique has a time
complexity of O(nlog(n)) that is dominated by the trian-
gulation. The convexity test is local and grouping for line
segments is essentially a greedy based technique. Jacob
[8] also developed a technique for grouping sparse line seg-
ments into convex sets, which is based on local convexity
tests and a back-tracking search strategy. The main dif-
ferences between our work and the previous research are
twofold. First, we propose an efficient globalconvexity test,
and second, we develop an optimal grouping strategy that
is based on dynamic programming. One immediate result
of the global convexity test is that spiral effects [7] can
be removed from creating any hypothesis. Second, global
optimization enhances the noise immunity of the grouping
process. Finally, we also believe that our approach has a
simpler underlying structure than the previous research in
this area.

3 Description of method

In this section we summarize different computational steps
in the the convexity grouping process. The edge detection
is based on Canny’s approach [4], which is inherently a gra-
dient operator. The resulting edges are linked, curve seg-
ments are extracted, and polygon representations of these
curve segments are obtained. In general, due to noise and
variation in contrast, the edge detection technique pro-
duces broken and undesirable curve segments. The objec-
tive is to group these curve segments such that individ-
ual objects can be extracted from background. The local



neighborhood is established by constructing a list of candi-
date line segments that lie within a distance Gipresn from
an end point of a line segment. This distance is selected
empirically, and is one of the parameters of the system.
The candidate list provides a set of potential hypotheses
for grouping line segments into convex sets.

3.1 Convexity grouping

We envision that each line segment corresponds to a node
in a disconnected attributed graph, and the goal of the
grouping is to link the nodes in this sparse graph in such
a way the convex sets are manifested. In this context, the
grouping problem is a function of two entities:

Objects = Group(features, geometric constraints) (1)

In this formulation, features correspond to line segments
(nodes) and attributes such as length, position, and direc-
tion. The geometric constraints represent the relationship
between the nodes of a convex object as described by line
segments. The goal of the convexity grouping is to link
these mid-level features, represented as nodes of a discon-
nected graph, in such a way that accumulation of these
nodes remains consistent with respect to the geometric
constraints.

The geometric constraints are expressed in terms of the
relationship between neighboring line segments. Let S be
a convex set that consists of ordered line segments A1, As,
., Ak, l.e., A1 and Ay are the first and last line segments
respectively, as shown in figure 1. The convexity test for
adding segment X to S is as follows:

let C' be the line segment connecting line Ax to Aj,
let D be the extension of the line Ag,
let o be the angle between line segments X and D,

let # be the angle between line segments X and C|

T B W o =

let ¢ be the angle formed between line segment D and
6. then line segment X can be appended to set S to form

a new convex set if the following two conditions are
satisfied:

(a) a+ B~ ¢, and
(b) segment X does not intersect segment A;.

The importance of our test is that only the first and last
line segments of a set are necessary and sufficient for con-
vexity verification. As a result, efficient implementation is
feasible.

As A:

A Ay

(a) (®)

Figure 1: (a) A1, Az, Az, and X form a convex set; (b) Aj,
Az, Az, and X form a concave set.

The grouping algorithm is initiated by selecting a seed
line segment as the initial hypothesis. In our implemen-
tation, the seed segments are ranked against their length

for generating convex objects. Once the seed is selected,
it is used to prune a path for computing a convex set in
the direction of line segments, where the directions of the
line segments are dictated by the Canny edge detector.
However, the seed segment might be in the middle of a
convex set. Hence, once the last segment in the convex set
is identified, it is used as a seed segment and a backward
search for finding a new convex set is initiated. It is pos-
sible that using this strategy, some of the line segments
that were included in the forward grouping process may
not be included in the reverse direction. Nevertheless, for-
ward and reverse search are necessary to capture all the
line segments that belong to a given set.

The technique for finding an optimal path for a con-
vex object is based on dynamic programming [13]. This
is achieved by defining a qualitative cost function where
desirable properties are directly encoded. Let

1. L; and L; be the length of two adjacent line segments
A; and Aj,

2. gi; be the gap size between line segments A; and Aj,
where the gap size is measured from the proper end
points,

3. a;; be the angle between line segments A; and Aj,

4. S be the current convex set at iteration ¢ (only the
first and last line segments are needed),

5. T'(S, A;) be a binary constraint of 1 or —oo that tests
the convexity hypothesis of adding segment A; to S.

We define the local cost function between segments A; and

Aj to be

9i; )
—00 otherwise
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The above cost function favors grouping those line sgg2
ments that generate long line segments, with small gaps
between them, while maintaining some degree of collinear-
ity in the group. This cost function is then integrated over
the entire path of a convex set, and the path with max-
imum cost 1s then selected for a given seed segment. In
this fashion, the path that satisfies closure, convexity, and
optimality is extracted. The dynamic programming algo-
rithm 1s essentially a multi-stage optimization technique
where at each stage, or each iteration, the size of the path
is increased by one line segment, and the cost of that par-
ticular path from the initial seed segment to the last line
segment 1s propagated. This process continues until no
more line segments can be added to the list from a given
seed point.

3.2 Optimization

Dynamic programming is a method for solving sequential
decision problems [13]. Let P be a set of states, D be a set
of possible decisions, F': P x D +— F be a cost function,
and ¥ : P x D+~ P be a function that maps the current
state and a decision into the next state. In a single step,
the maximum possible value starting from state p; is given
by:

Hi(p:) = max F(pi, d) (3)
By the same token, choosing a decision d that maximizes
the value of a sequence for n states starting from p; is

found by:
Hn(pi) = max [F(pi, d) + Hn1 ($(pi, d))] (4)

The above recurrence relation, together with the cost
function of equation (2), specifies an optimum path for



the refined contour such that constraints are satisfied. In
this formulation, the decision d corresponds to any of the
candidate line segment that correspond to A; in equation

(2).
3.3 Tracking

The detection system provides the initial contour bound-
ary for subsequent tracking using the deformable models
[1, 9, 12, 11]. We use the mass spring model and express
the nodal displacement as radial distance with respect to
the center of the mass. The dynamic of this system is
expressed as

MR+CR+KR=F (5)

Where M, C, K, and F correspond to the mass, damping,
stiffness and external image forces. In our implementa-
tion, we assume uniform mass particles around the con-
tour with constant damping coefficients for higher compu-
tational throughput.

3.4 Examples and conclusion

Several examples of the convexity grouping are provided.
In all of these examples, the parameter Gipresn Was set to
30 pixels. Images obtained from transmission electron mi-
croscope (TEM) are generally noisy, have poor contrast,
and depending on the position of the electron beam and
the foil angle, suffer from shading artifacts. An exam-
ple is shown in figure 2, where a, b, and ¢ correspond to
the original image with Canny edges overlaid on it, and to
the result of forward and backward groupings, respectively.
Notice that the precipitate contains inner structures that
are of no significance to us, since we are interested only
in global shape features. In parts b and ¢, we show the
results of forward and backward searches for convexity. It
is quite possible that the search could be initiated from a
line segment that is not at the start of a sequence. Hence,
the forward and backward search is necessary to capture
all the line segments that constitute a convex set. Several
convex sets are detected, but only one of them corresponds
to the real object. In this case, the desired group has higher
contrast and enjoys parallel symmetry. The next example
is the result of groupings of line segments that correspond
to a view of a room. In this example, some of the convex
shapes are delineated. And some of the convex sets have
no underlying perceptual significance. The latter is due to
the fact that convexity is only one intermediate step in the
mid-level vision and other constraints such is symmetry,
contrast, and color are important cues for any high level
interpretation as well. In this system, once an object is ex-
tracted, it 1s tracked with a variant of the snake model for
dynamic shape analysis. In this context, the initial con-
tour is coarsely localized by the convexity grouping, and
the snake is used for refinement and tracking. Figure 4
shows the initial condition of a precipitate at room tem-
perature followed by its shape changes during the heating
and cooling experiments.

The optimal convexity grouping algorithm has a time
complexity of O(nm) where n and m correspond to the
number of line segments and the number of line segments
in a given neighborhood, respectively.
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